125 research outputs found

    Adjuvant radiotherapy after salvage surgery for melanoma recurrence in a node field following a previous lymph node dissection

    Get PDF
    Background and Objectives: Adjuvant radiotherapy (RT) can be given to melanoma patients following salvage surgery for node field recurrence after a previous regional node dissection, but the value of this treatment strategy is poorly documented. This study evaluated long-term node field control and survival of patients treated in this way in an era before effective adjuvant systemic therapy became available. Methods: Data for 76 patients treated between 1990 and 2011 were extracted from an institutional database. Baseline patient characteristics, treatment details and oncological outcomes were analysed. Results: Adjuvant RT with conventional fractionation (median dose 48 Gy in 20 fractions) was given to 43 patients (57%) and hypofractionated RT (median dose 33 Gy in 6 fractions) to 33 patients (43%). The 5-year node field control rate was 70%, 5-year recurrence-free survival 17%, 5-year melanoma-specific survival 26% and 5-year overall survival 25%. Conclusions: Salvage surgery with adjuvant RT achieved node field control in 70% of melanoma patients with node field recurrence following a prior node dissection. However, disease progression at distant sites was common and survival outcomes were poor. Prospective data will be required to assess outcomes for contemporary combinations of surgery, adjuvant RT and systemic therapy.</p

    Cost-Effectiveness of PET/CT Surveillance Schedules to Detect Distant Recurrence of Resected Stage III Melanoma

    Get PDF
    Objective: To estimate the cost-effectiveness of three surveillance imaging strategies using whole-body positron emission tomography (PET) with computed tomography (CT) (PET/CT) in a follow-up program for adults with resected stage III melanoma. Methods: An analytic decision model was constructed to estimate the costs and benefits of PET/CT surveillance imaging performed 3-monthly, 6-monthly, or 12-monthly compared with no surveillance imaging. Results: At 5 years, 3-monthly PET/CT surveillance imaging incurred a total cost of AUD 88,387 per patient, versus AUD 77,998 for 6-monthly, AUD 52,560 for 12-monthly imaging, and AUD 51,149 for no surveillance imaging. When compared with no surveillance imaging, 12-monthly PET/CT imaging was associated with a 4% increase in correctly diagnosed and treated distant disease; a 0.5% increase with 6-monthly imaging and 1% increase with 3-monthly imaging. The incremental cost-effectiveness ratio (ICER) of 12-monthly PET/CT surveillance imaging was AUD 34,362 for each additional distant recurrence correctly diagnosed and treated, compared with no surveillance imaging. For the outcome of cost per diagnostic error avoided, the no surveillance imaging strategy was the least costly and most effective. Conclusion: With the ICER for this strategy less than AUD 50,000 per unit of health benefit, the 12-monthly surveillance imaging strategy is considered good value for money

    Implementation of patient-reported outcome measures and patient-reported experience measures in melanoma clinical quality registries: a systematic review

    Get PDF
    Abstract Objectives To identify patient-reported outcome measures (PROMs) and patient-reported experience measures (PREMs) in clinical quality registries, for people with cutaneous melanoma, to inform a new Australian Melanoma Clinical Outcomes Registry; and describe opportunities and challenges of routine PROM/PREM collection, especially in primary care. Design Systematic review. Primary and secondary outcome measures Which PROMs and PREMs are used in clinical quality registries for people with cutaneous melanoma, how they are collected, frequency of collection, participant recruitment methods and funding models for each registry. Results 1134 studies were identified from MEDLINE, PreMEDLINE, Embase, PsychInfo, Cochrane Database of Abstracts of Reviews of Effects databases and TUFTS Cost-Effectiveness Analysis Registry, alongside grey literature, from database inception to 5th February 2020. Following screening, 14 studies were included, identifying four relevant registries: Dutch Melanoma Registry, Adelphi Real-World Disease-Specific Programme (Melanoma), Patient-Reported Outcomes Following Initial treatment and Long-term Evaluation of Survivorship Registry, and Cancer Experience Registry. These used seven PROMs: EuroQol-5 Dimensions, Functional Assessment of Cancer-General (FACT-G) and FACT-Melanoma (FACT-M), European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire-Cancer 30 (EORTC QLQ-C30), Fatigue Assessment Scale Hospital Anxiety and Depression Scale, Patient-Reported Outcome Measures Information System-29 and one PREM; EORTC QLQ-Information Module 26. PROMs/PREMs in registries were reported to improve transparency of care; facilitate clinical auditing for quality assessment; enable cost-effectiveness analyses and create large-scale research platforms. Challenges included resource burden for data entry and potential collection bias toward younger, more affluent respondents. Feedback from patients with melanoma highlighted the relevance of PROMs/PREMs in assessing patient outcomes and patient experiences. Conclusions Clinical registries indicate PROMs/PREMs for melanoma care can be incorporated and address important gaps, however cost and collection bias may limit generalisability

    Cost-effectiveness analysis of PET/CT surveillance imaging to detect systemic recurrence in resected stage III melanoma: study protocol

    Get PDF
    Introduction In the new era of effective systemic therapies for advanced melanoma, early detection of lower volume recurrent disease using surveillance imaging can improve survival. However, intensive imaging follow-up strategies are likely to increase costs to health systems and may pose risks to patients. The objective of this study is to estimate from the Australian health system perspective the cost-effectiveness of four follow-up strategies in resected stage III melanoma over a 5-year period following surgical treatment with curative intent. Methods and analysis A decision-analytic model will be built to estimate the costs and benefits of (1) 12 monthly, (2) 6 monthly, (3) 3–4 monthly positron emission tomography/CT imaging for 5 years, compared with (4) no imaging follow-up. The model will be populated with probabilities of disease recurrence, test performance measures using data from >1000 consecutive resected stage III melanoma patients from Melanoma Institute Australia diagnosed between 2000 and 2017. Healthcare resource use, including surveillance imaging, doctor’s visits, subsequent tests and procedures to investigate suspicious findings, will be quantified from detailed patient records and valued using Australian reference pricing. Economic outcomes include cost per new distant melanoma recurrence detected and cost per diagnostic error avoided, for no imaging compared with the other strategies. Deterministic sensitivity analyses will examine the robustness of model results. Ethics and dissemination This study was approved by the Sydney Local Health District, Sydney Local Health District Ethics Review Committee (RPAH Zone), AU/1/830638 and the Australian Institute of Health and Welfare (EO2019-1-454). The results of this study will be published in peer-reviewed medical and health economics journals and will inform melanoma management guidelines

    The Impact of Surveillance Imaging Frequency on the Detection of Distant Disease for Patients with Resected Stage III Melanoma

    Get PDF
    Background It is not known whether there is a survival benefit associated with more frequent surveillance imaging in patients with resected American Joint Committee on Cancer stage III melanoma. Objective The aim of this study was to investigate distant disease-free survival (DDFS), melanoma-specific survival (MSS), post distant recurrence MSS (dMSS), and overall survival for patients with resected stage III melanoma undergoing regular computed tomography (CT) or positron emission tomography (PET)/CT surveillance imaging at different intervals. Patients and Methods A closely followed longitudinal cohort of patients with resected stage IIIA–D disease treated at a tertiary referral center underwent 3- to 4-monthly, 6-monthly, or 12-monthly surveillance imaging between 2000 and 2017. Survival outcomes were estimated using the Kaplan–Meier method, and log-rank tests assessed the significance of survival differences between imaging frequency groups. Results Of 473 patients (IIIA, 19%; IIIB, 31%; IIIC, 49%; IIID, 1%) 30% underwent 3- to 4-monthly imaging, 10% underwent 6-monthly imaging, and 60% underwent 12-monthly imaging. After a median follow-up of 6.2 years, distant recurrence was recorded in 252 patients (53%), with 40% detected by surveillance CT or PET/CT, 43% detected clinically, and 17% with another imaging modality. Median DDFS was 5.1 years (95% confidence interval 3.9–6.6). Among 139 IIIC patients who developed distant disease, the median dMSS was 4.4 months shorter in those who underwent 3- to 4-monthly imaging than those who underwent 12-monthly imaging. Conclusion Selecting patients at higher risk of distant recurrence for more frequent surveillance imaging yields a higher proportion of imaging-detected distant recurrences but is not associated with improved survival. A randomized comparison of low versus high frequency imaging is needed

    Patient Preferences for Follow-up After Recent Excision of a Localized Melanoma

    Get PDF
    Importance The standard model of follow-up posttreatment of localized melanoma relies on clinician detection of recurrent or new melanoma, through routinely scheduled clinics (clinician-led surveillance). An alternative model is to increase reliance on patient detection of melanoma, with fewer scheduled visits and increased support for patients’ skin self-examination (SSE) (eg, using smartphone apps to instruct, prompt and record SSE, and facilitate teledermatology; patient-led surveillance). Objective To determine the proportion of adults treated for localized melanoma who prefer the standard scheduled visit frequency (as per Australian guideline recommendations) or fewer scheduled visits (adapted from the Melanoma Follow-up [MELFO] study of reduced follow-up). Design, Setting, and Participants This survey study used a telephone interview for surveillance following excision of localized melanoma at an Australian specialist center. We invited a random sample of 400 patients who had completed treatment for localized melanoma in 2014 to participate. They were asked about their preferences for scheduled follow-up, and experience of follow-up in the past 12 months. Those with a recurrent or new primary melanoma diagnosed by the time of interview (0.8-1.7 years since first diagnosis) were asked about how it was first detected and treated. SSE practices were also assessed. Main Outcomes and Measures Proportion preferring standard vs fewer scheduled clinic visits, median delay between detection and treatment of recurrent or new primary melanoma, and SSE practices. Results Of the 262 people who agreed to be interviewed, the mean (SD) age was 64.3 (14.3) years, and 93 (36%) were women. Among the 230 people who did not have a recurrent or new primary melanoma, 149 vs 81 preferred the standard vs fewer scheduled clinic visits option (70% vs 30% after adjusting for sampling frame). Factors independently associated with preferring fewer visits were a higher disease stage, melanoma on a limb, living with others, not having private health insurance, and seeing a specialist for another chronic condition. The median delay between first detection and treatment of recurrent or new primary melanoma was 7 and 3 weeks, respectively. Only 8% missed a scheduled visit, while 40% did not perform SSE or did so at greater than 3-month intervals. Conclusions and Relevance Some patients with melanoma may prefer fewer scheduled visits, if they are supported to do SSE and there is rapid clinical review of anything causing concern (patient-led surveillance)

    Can patient-led surveillance detect subsequent new primary or recurrent melanomas and reduce the need for routinely scheduled follow-up? A protocol for the MEL-SELF randomised controlled trial

    Get PDF
    This research project is funded by a National Health and Medical Research Council (NHMRC) Project grant (#1163054). The funder had no role in the design of the study and will have no role in the collection, analysis, and interpretation of the data; the writing of the report; or the decision to submit the report for publication. Funding Information: AEC is funded by a Career Development Fellowship from the National Health and Medical Research Council (NHMRC; 1147843). JFT is a recipient of an NHMRC Program Grant (1093017). RPMS is supported by Melanoma Institute Australia. RAS is supported by a NHMRC Program Grant and Practitioner Fellowship. For RAS, support from the from colleagues at Melanoma Institute Australia, Royal Prince Alfred Hospital and NSW Health Pathology is also gratefully acknowledged. RLM is supported with an NHMRC Investigator grant (1194703) and a University of Sydney Robinson Fellowship. HPS holds an NHMRC MRFF Next Generation Clinical Researchers Program Practitioner Fellowship (APP1137127). JH is supported by an NHMRC Early Career Fellowship (1112509). KB is supported by an NHMRC Investigator Grant (1174523) and a University of Sydney Research Accelerator (SOAR) Prize.Peer reviewedPublisher PD

    Performance of long-term CT and PET/CT surveillance for detection of distant recurrence in patients with resected stage IIIA-D melanoma

    Get PDF
    Background Follow-up for patients with resected stage IIIA–D melanoma may include computed tomography (CT) or positron emission tomography (PET)/CT imaging to identify distant metastases. The aim of this study was to evaluate the test performance over follow-up time, of structured 6- and 12-monthly follow-up imaging schedules in these patients. Methods We conducted a retrospective analysis of consecutive resected stage IIIA–D melanoma patients from Melanoma Institute Australia (2000–2017). Patients were followed until a confirmed diagnosis of distant metastasis, end of follow-up schedule, or death. Test accuracy was evaluated by cross-classifying the results of the test against a composite reference standard of histopathology, cytology, radiologic imaging, and/or clinical follow-up, and then quantified longitudinally using logistic regression models with random effects. Results In total, 1373 imaging tests were performed among 332 patients. Distant metastases were detected in 110 (33%) patients during a median follow-up of 61 months (interquartile range 38–86), and first detected by imaging in 86 (78%) patients. 152 (68%) patients had at least one false-positive result. Sensitivity of the schedule over 5 years was 79% [95% confidence interval (CI) 70–86%] and specificity was 88% (95% CI 86–90%). There was no evidence of a significant difference in test performance over follow-up time or by American Joint Committee on Cancer (AJCC) substage. The positive predictive value ranged between 33 and 48% over follow-up time, reflecting a ratio of 1:2 false-positives per true-positive finding. Conclusions Regular 6- or 12-monthly surveillance imaging using CT or PET/CT has reasonable and consistent sensitivity and specificity over 5-year follow-up for resected stage IIIA–D melanoma patients. These data are useful when discussing the risks and benefits of long-term follow-up
    • …
    corecore